51在线

Asif Nakhuda

Asif Nakhuda
Asif Nakhuda
Asif Nakhuda
Head of Gene Targeting Facility
Asif Nakhuda

Latest Publications

Open Access
Nic Aodha L, Pokhilko A, Rosen LU, Galatidou S, Walewska E, Belton C, Galvao A, Okkenhaug H, Yu L, Nakhuda A, Mansfield B, Khan S, Oxley D, Barrag谩n M, Kelsey G Epigenetics , Mass Spectrometry , Biological Support Unit , Imaging , Genomics , Bioinformatics

Nlrp5 encodes a core component of the subcortical maternal complex (SCMC) a cytoplasmic protein structure unique to the mammalian oocyte and cleavage-stage embryo. NLRP5 mutations have been identified in patients presenting with early embryo arrest, recurrent molar pregnancies and imprinting disorders. Correct patterning of DNA methylation over imprinted domains during oogenesis is necessary for faithful imprinting of genes. It was previously shown that oocytes with mutation in the human SCMC gene KHDC3L had globally impaired methylation, indicating that integrity of the SCMC is essential for correct establishment of DNA methylation at imprinted regions. Here, we present a multi-omic analysis of an Nlrp5-null mouse model, which in germinal vesicle (GV) stage oocytes displays a misregulation of a broad range of maternal proteins, including proteins involved in several key developmental processes. This misregulation likely underlies impaired oocyte developmental competence. Amongst impacted proteins are several epigenetic modifiers, including a substantial reduction in DNMT3L; we show that de novo DNA methylation is attenuated in Nlrp5-null oocytes, including at some imprinting control regions. This provides evidence for a mechanism of epigenetic impairment in oocytes which could contribute to downstream misregulation of imprinted genes.

+view abstract Molecular human reproduction, PMID: 41252458

Open Access
Maskalenka K, Alag枚z G, Krueger F, Wright J, Rostovskaya M, Nakhuda A, Bendall A, Krueger C, Walker S, Scally A, Rugg-Gunn PJ Epigenetics , Gene Targeting , Bioinformatics , Imaging

Gene duplication events can drive evolution by providing genetic material for new gene functions, and create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and na茂ve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein-coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways including homeodomain point mutations. NANOGP1 is a strong inducer of na茂ve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human na茂ve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.

+view abstract Development (Cambridge, England), PMID: 36621005

Group Members

Asif Nakhuda

Head of Gene Targeting Facility

Caro Wilson

Scientific Services Technician